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1. INTRODUCTION

Convective rainstorms significantly affect many human activities. At the 
same time, such phenomena represent a particularly difficult forecasting 
problem because they develop and decay rapidly, and generally affect a small 
area for only a short period of time.

A number of numerical models of convective systems have been developed and 
demonstrated. These models simulate the development of individual thunder
storms or entire mesososcale convective systems. In an operational weather 
forecasting environment, however, neither the necessary observations nor 
computing power is usually available to run these models.

Yet it is possible to make use of radar observations to forecast future 
rainfall by extrapolation of the digitized reflectivity field. The movement 
of mature convective systems (the ones most likely to cause flash flooding and 
widespread severe weather outbreaks) is sufficiently conservative that linear 
extrapolation forecasts of their position are useful to at least 30 minutes, 
and possibly somewhat longer. The velocity of the system can be estimated 
from a sequence of earlier radar observations and its future position fore
casted by assuming that the velocity will remain constant during the forecast 
projection period. The extrapolative forecast procedure is illustrated 
schematically in Fig. 1. The storm motion vector (SMV) between times t_30 and 
t0 can be estimated objectively by calculating the displacement that yields 
the best pattern match between the two images. The forecasted precipitation 
area at time t+30 (the hatched region in the figure) is made by displacing the 
t0 image at this velocity.

This type of extrapolative forecast system has been implemented operational
ly by forecasting groups in a number of countries (Austin and Bellon, 1974; 
Conway, 1987; Takemura et al., 1987). At present, the Weather Surveillance 
Radar 1988 Doppler (WSR-88D) information processing system includes an echo 
centroid extrapolation product, though the product represents only forecasted 
positions for individual convective cells.

Saffle and Elvander (1981), hereafter referred to as SE81, demonstrated that 
it should be possible to make substantive improvements in extrapolative 
forecasts by treating future zero-tilt reflectivity (ZTR) within the storm 
system as a statistically-derived function of current reflectivity, echo top 
height (TOPS), and vertically-integrated liquid (VIL) estimates. In their 
approach, the basic extrapolative forecast steps (as shown in Fig. 1) were 
repeated on many sequences of archived radar data. The TOPS and VIL fields 
were extrapolated at the same velocity as the ZTR field. For each test 
forecast, grid-point values from the initial-time radar field, the field 
forecasted for valid time by extrapolation, and the valid-time radar field, 
were stored. An equation relating initial-time and extrapolated ZTR, TOPS, 
and VIL values to the valid-time observed ZTR was then determined by linear 
screening regression. In operations, this equation would be used to forecast



the future ZTR values within the area to which the reflectivity field is 
extrapolated. SE81 found that the optimum predictor combination for future 
ZTR featured both ZTR and echo tops; it appeared that the deepest echoes were 
the ones most likely to feature high reflectivity after an interval of 
30 minutes or more.

This study involves a repeat of SE81's original experiments in forecasting 
instantaneous ZTR values with a much larger sample of volumetric reflectivity 
observations than was then available. We have also incorporated a number of 
refinements to the methodology for estimating the storm motion vector, and 
expressed the reflectivity forecast in probabilistic terms. We will show that 
the extrapolative method yields useful skill to projections as great as 
60 minutes.

2. DATA USED IN THIS STUDY

The radar data used in this study were collected at the WSR-57 site in 
Oklahoma City, Oklahoma (OKC), which has been equipped with Radar Data 
Processor II (RADAP-II) minicomputer equipment since the early 1980's. The 
RADAP II controls the radar during volumetric scanning observations, calcu
lates and displays a variety of reflectivity-based radar products, and 
automatically archives data. In these experiments, we have used observations 
from the period 1985-1989. The cases are almost exclusively convective 
events, which are the ones most likely to cause flash flooding. All data were 
manually edited to remove anomalous propagation echoes.

For both trial time projections, individual sequences of radar images from 
85 or more separate calendar days were used. Each image sequence consisted of 
five volumetric scans. The first four images were taken at 30, 20, 10, and 
0 minutes before the initial time; these were used to estimate the motion 
vector. The fifth scan was taken at valid time, either 30 or 60 minutes after 
initial time. Our data sample features 816 sequences for the 30-minute 
forecasting experiment and 658 sequences for the 60-minute experiment. The 
digitized ZTR, VIL, and TOPS fields were objectively interpolated to a 
4 x 4 km cartesian grid centered on the radar site. Data within 20 km of the 
radar were excluded to avoid the effects of ground clutter; data beyond 180 km 
were excluded because earth curvature effects can adversely affect the VIL and 
TOPS calculations at such range.

3. DERIVATION OF STORM MOTION VECTORS

A binary-correlation pattern-matching procedure was used to estimate storm 
motion vectors in this study. This method, described by SE81 and by Ciccione 
and Pircher (1984), is economical, and works well when the entire echo region 
does not change size or shape appreciably. Here, the "0-1" binary criterion 
was taken to be the 40-dBZ level in the ZTR field.

Initially, the SMV was estimated as the mean of the vectors calculated 
between three pairs of images, that is, from t.30 to t_20, from t_20 to t_10, and 
from t_10 to t0. The subscripts refer to time, in minutes, relative to the 
initial time t0. By employing image pairs only 10 minutes apart, we hoped to 
minimize the effects of changes in the echo patterns. However, it was found 
that this approach tended to underestimate the echo speed, due to discretiza
tion error when the echo movement was small relative to the grid spacing.
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Better results were obtained when the SMV was estimated from the t0 and t.30 
images, or the two possible pairings at 20-minute separation. After further 
tests, it was decided to select the extrapolation SMV according to which of 
these three pairs of images had the highest binary correlation coefficient 
(that is, the pair having the closest match in terms of shape and size of the 
reflectivity region). Since the 30-minute movement vector should logically be 
least affected by discretization error, it was used in preference to the 
20-minute vectors, unless one of the 20-minute image pairs had a binary 
correlation coefficient exceeding the 30-minute coefficient by at least 0.05.

In cases where none of the pairings had a binary correlation as high as 
0.50, a motion vector from an earlier pair of images, as far back as 
120 minutes from t0, was used. Finally, if no earlier pattern-match estimate 
of the SMV was available, the 700-hPa wind vector from the Nested Grid Model 
(NGM) forecast or analysis was used. Other tests, carried out in conjunction 
with this study, had shown that this wind vector was generally the best fully 
independent estimate of the echo motion that could be obtained from the NGM 
upper-air winds.

4. VALIDATION OF THE REFLECTIVITY EXTRAPOLATION TECHNIQUE

To verify that the extrapolation method outlined above yields significantly 
skillful forecasts of reflectivity, we prepared analyses in which both 
extrapolative and persistence forecasts were verified with observed data. The 
extrapolative forecasts were made by advancing an initial-time (t0) field for 
30- and 60-minute projections. The persistence forecast was simply the t0 
reflectivity field itself. We expected that the set of extrapolative fore
casts would be the one more highly correlated to verifying observations.

The experimental forecasts utilized data from over 280 sequences of radar 
images. All points of the 4 x 4 km analysis grid within approximately 130 km 
of the radar were incorporated. The forecasts and verifying observations were 
reduced to categorical values according to whether the reflectivity reached, 
or did not reach, a threshold of 18 dBZ. For the 30-minute forecast experi
ment, over 3,818,000 individual grid-point cases were tested, while over 
2,882,000 cases were available for the 60-minute experiment.

The terms for possible outcomes are shown in Fig. 2. In the figure, X 
indicates the number of grid points at which both forecasted and observed 
reflectivity exceeded 18 dBZ ("hits"), Y denotes the number of grid points at 
which the observed, but not the forecasted, reflectivity exceeded 18 dBZ 
("misses"), and Z indicates cases in which forecasted but not observed 
reflectivity exceeded the threshold ("false alarms"). The final category, W, 
denotes cases in which neither forecasted nor observed reflectivity reached 
18 dBZ.

The outcome values are often used in calculating forecast scores as outlined 
by Donaldson et al. (1975). The probability of detection (POD), is defined by 
X/(X+Y), the false alarm ratio by Z/(X+Z), and the critical success index 
(CSI) by X/(X+Y+Z).

The results of the 30-minute forecasting experiment, for both extrapolation 
and persistence forecasts, are shown in Fig. 3. Note that the number of cases 
in each outcome category is shown in thousands. The categorical forecast 
scores (Fig. 4) indicate that the extrapolative forecasts do possess more
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skill than the persistence forecasts. The POD is higher (0.70 compared to 
0.66), while the FAR is lower (0.25 compared to 0.29). The CSI, which 
represents overall skill, was higher for the extrapolation forecasts (0.57 
compared to 0.52). Within this sample, 32% of the verifying observations 
exceeded the 18 dBZ reflectivity threshold.

The differences in forecast scores were slightly larger for the 60-minute 
forecasts, as might be expected given the greater time projection. As shown 
in Fig. 5, the POD values for extrapolative and persistence forecasts were 
0.55 and 0.50, respectively, the FAR values were 0.40 and 0.43, and the CSI 
values 0.42 and 0.36. Within this sample, only 21% of the verifying observa
tions exceeded the reflectivity threshold. This percentage was smaller than 
in the 30-minute experiment; while all sequences were initiated at times when 
there was some convective activity within the verification region of the 
umbrella, a greater portion of the echoes exited the region during the longer 
projection interval.

Finally, the 30-minute forecasting experiment was repeated, but the reflec
tivity threshold was increased to 40 dBZ, a considerably higher value which 
typically constitutes a small fraction of the echo region, even in convective 
events. The extrapolation forecasts were clearly superior to persistence 
(Fig. 6), though the CSI values for the extrapolation and persistence fore
casts were only 0.21 and 0.13, considerably lower than for forecasts for the 
18 dBZ level. This is probably a consequence of the fact that the 40 dBZ 
region generally occupies a small fraction of the radar umbrella. Only 3.1% 
of the verifying values reached this reflectivity threshold. Also, the 40 dBZ 
region often represents the core region of convective updrafts, which develop 
and decay rapidly. The 18 dBZ area usually envelopes the strong updrafts, and 
changes size and shape more slowly.

5. CREATION OF THE STATISTICAL PREDICTOR-PREDICTAND DATASET

For each sequence of radar images, the extrapolation process outlined above 
was carried out, and the extrapolation forecast image was compared to the 
observed image at valid time. Grid-point values of ZTR, VIL, and TOPS, from 
both the extrapolated and initial time images, were stored in a separate 
dataset as candidate predictors. It is logical to expect that the initial
time data would contribute substantial information to forecasts of 20 minutes 
or less, which will be considered later in this study. The valid time ZTR 
values at the same grid points were stored as predictand data. Local averages 
and maxima of all values were also stored as new candidate predictors and 
alternate predictands.

This extrapolative-statistical method can be expected to yield information 
on reflectivity changes only within existing echo areas. Since the method 
cannot forecast changes in echo region shape or the formation of new echoes, 
data at other points in the valid time image do not contribute truly useful 
information to the regression procedure. Therefore, only ZTR, VIL, and TOPS 
values from grid points where the extrapolated ZTR was nonzero (the hatched 
area in Fig. 1) were stored and entered in the regression procedure. The 
values were drawn from every fifth grid point (20-km nominal spacing) in the 
north-south and east-west directions.
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6. VALID-TIME REFLECTIVITY AS A FUNCTION OF EXTRAPOLATED RADAR PARAMETERS

The expected 30-minute projection valid-time ZTR (VALZTR) as a function of 
extrapolated ZTR (EXZTR) and TOPS (EXTOPS) is shown in Fig. 7. In this 
analysis, all extrapolated fields and VALZTR were averaged over 12 x 12 km 
square regions. Data from over 26,000 individual cases were included.

It is apparent that the extrapolated echo characteristics are significantly 
correlated to the VALZTR; the nonlinear correlation ratio (Panofsky and Brier, 
1968) indicated that EXZTR (Fig. 7a) explained 22% of the variance in VALZTR. 
Within this sample, the mean of EXZTR was 35 dBZ, while the mean of VALZTR was 
30 dBZ, with a standard deviation of 14 dBZ. It is understandable that VALZTR 
is less than EXZTR because of echo decay and errors in forecasting the system 
movement. The EXTOPS predictor (Fig. 7b) explained 23% of the variance.
Though these are rather small reductions of variance, it should be noted that 
the verifying region is also small, only 144 km2.

The value of the extrapolation procedure is apparent when reductions in 
variance with respect to VALZTR are compared for various predictors (Fig. 8). 
The extrapolation predictors all explained about twice the percentage of the 
variance that the initial-time predictors did. Note that this comparison is 
somewhat different from the one described in the previous section; here, only 
grid points at which the extrapolation forecast indicated a nonzero reflec
tivity were considered.

Consistent results were obtained when this analysis was repeated for 
60-minute extrapolation forecasts. In this data sample, the mean and standard 
deviation of VALZTR were 26.1 and 15.4, respectively. The corresponding 
reductions in variance (Fig. 9) were lower than for the 30-minute forecasts, 
as would be expected. Again, the extrapolation predictors explained substan
tially more of the variance in VALZTR than initial-time values did.

Forward screening linear regression was used to derive forecast equations 
relating VALZTR to the various predictors at 30- and 60-minute projections.
An alternate predictand, ZTR averaged over a 20 x 20 km square region, was 
also tested. Generally, for both predictands, only two or three predictors 
contributed substantially to the reduction of variance, and these were usually 
EXTOPS and EXZTR.

Verification of these forecasts on independent radar data suggested that 
forecasts of the ZTR field itself might not be sufficiently accurate for 
operational use. The mean forecast error was nearly 10 dBZ, which corresponds 
to a rainrate error of factor four to five. This result suggested that the 
extrapolative forecast system might be more useful if it produced probabilist
ic, rather than continuous, forecasts.

7. PROBABILISTIC FORECASTS FOR REFLECTIVITY 
IN EXCESS OF A 40 DBZ THRESHOLD

The probabilistic approach involves defining the predictand as unity if 
VALZTR is greater than or equal to 40 dBZ, and zero otherwise. The screening 
regression process then yields a regression estimate of event probability 
(REEP) of reaching or exceeding the 40-dBZ threshold. Such forecasts should 
be useful in field operations, since they would provide the forecaster with 
the potential of rainfall in excess of a significant rate, rather than a
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simple expected value with no explicit statement of the level of certainty.
The 40-dBZ level corresponds to a rainrate of approximately 0.5 inches per 
hour and is often used to delineate "convective" from "stratiform" rainfall.

The results of this approach are illustrated in Fig. 10, which shows the 
probability that the ZTR will exceed 40 dBZ within a 12 x 12 km square region, 
given various values of ZTR and VIL at initial time. The ZTR predictor is 
EXZTRMX, defined as the local maximum ZTR value within a 12 x 12 km region 
centered on the grid point of interest, and extrapolated forward by 
30 minutes. The VIL predictor, EXVILMX, was similarly defined as the extrapo
lation of the local maximum in VIL.

As shown in Fig. 10a, if the initial local maximum ZTR was 22.5 dBZ, there 
was only a 5% probability that the same subregion within the moving echo area 
would have a reflectivity in excess of 40 dBZ 30 minutes later. The probabil
ity increased to over 50% if the initial echo was 46-48 dBZ, and to over 70% 
if the initial echo was 53 dBZ or greater. Similar results are shown in 
Fig. 10b; it is apparent that current VIL is also an effective predictor of 
future reflectivity. If the initial VIL exceeded 10 kg m'2, there was at 
least a 60% probability that the echo region would feature ZTR in excess of 
40 dBZ after 30 minutes. In this sample, 32% of the cases had valid-time ZTR 
above the threshold, and EXVILMX explained 25% of the predictand variance.
The EXZTRMX predictor explained 24% of the variance.

The reduction of variance with respect to this binary predictand, for both 
extrapolated and initial-time predictors, appears in Fig. 11. As was the case 
for a continuous ZTR predictand, the extrapolated predictors were much more 
highly correlated with later high-reflectivity occurrence than were the 
initial-time fields. The extrapolated echo top predictor was no longer the 
best in terms of reduction of variance. It is possible that, while extrapo
lated TOPS was the predictor most highly correlated to future ZTR over the 
entire range of ZTR values, the extrapolated ZTR and VIL fields were more 
highly correlated to future ZTR within the range near the 40 dBZ value, which 
is of importance in defining the binary predictand.

The relationship between extrapolated VIL and VALZTR at the 60-minute 
projection is shown in Fig. 12. Here, the probability of 40 dBZ echo occur
rence, within a 12 x 12 km region at the 60-minute projection, is shown as a 
function of EXVILMX. At this greater time projection, EXVILMX explains less 
variance in the predictand, as could be expected; the histogram indicates that 
this predictor cannot delineate probability values less than 12% or greater 
than 50%. The overall relative frequency of 40-dBZ echoes in this sample was 
only 25%; this is due to the tendency of echoes to move out of the verifica
tion region during the forecast period. The EXVILMX predictor explained 9% of 
the predictand variance.

8. VALIDATION OF 30- AND 60-MINUTE PROBABILISTIC REFLECTIVITY FORECASTS

To obtain a more comprehensive view of the possibilities of this potential 
forecasting system, we prepared and then verified probabilistic forecast 
equations for the two predictands illustrated above. For both the 30- and 
60-minute projections, two separate equations were developed from subsets of 
the available data samples. Forecasts were then generated for independent 
samples and verified.
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The resulting equations for 30-minute ZTR are:

P30 = -66.5 + (2.05 EXZTRMX) + (2.31 EXTOPMX) (1)

based on data from 1985, 1987, and 1988, and

P30 = -50.3 + (1.98 EXZTRMX) + (1.97 EXVILAV) (2)

based on data from 1985, 1988, and 1989. Here, P30 is the probability that a
ZTR value of 40 dBZ or more will be observed within a 12 x 12 km region 
30 minutes later. The predictors EXZTRMX and EXTOPMX are the maximum observed
ZTR (dBZ) and TOPS (km AGL) values within a 12 x 12 km region extrapolated to
valid time. EXVILAV is the mean VIL value within a 12 x 12 km region extrapo
lated to valid time.

Within their respective dependent datasets, (1) explained 21% of the 
predictand variance and (2) explained 25%. In both equations, most of the 
reduction of variance was contributed by the EXZTRMX term. Though our earlier 
analysis indicated that EXVILMX had the highest nonlinear correlation to 
future ZTR, EXZTRMX had a higher linear correlation. EXVILMX might have been 
selected by this screening procedure if it had been entered in a "linearized" 
form (see Reap and Foster, 1979, or Charba, 1977 for an explanation of the 
linearization process).

Forecasts for cases in calendar year 1989 were then prepared from (1) and 
for cases in 1987 from (2). The reliability of the probability forecasts 
within the independent data samples is illustrated in Fig. 13. Though there 
was some tendency to overforecast when forecasted values were greater than 
70%, no strong bias appeared in the sample as a whole.

The probabilistic forecasts may be objectively reduced to categorical 
(yes/no) by applying a threshold probability. An analysis of the scores that 
might be achieved by such categorical forecasts appears in Fig. 14. As 
before, POD represents probability of detection, FAR the false alarm ratio, 
and CSI the critical success index or threat score. Each score is shown for a 
range of possible threshold probabilities, from 1 to 40%. The peak CSI is 
achieved at a threshold of 35%, at which the POD is 0.71 and the FAR is 0.42. 
The bias at this threshold (not shown) is 1.2. Thus, categorical forecasts 
from this system could detect approximately 70% of the 40 dBZ echoes, while 
the number of "yes" forecasts would exceed the number of "yes" observations by 
about 20%. To achieve a POD of 0.8, it would be necessary to apply a thresh
old probability of 29, and accept an FAR of 0.48 and bias of 1.5.

This process was repeated to obtain forecast equations for a 20 x 20 km 
region at a 60-minute projection. The resulting test equations are:

P60 = -32.1 + (1.40 EXZTRMX) + (2.04 EXTOPMX) (3)

based on data from 1985, 1988, and 1989, and

P60 = -39.6 + (1.48 EXZTRMX) + (2.17 EXTOPMX) (4)

based on data from 1985, 1987, and 1988. The definition of P60 is analogous 
to that of P30 in (1) and (2). The reduction of variance for these equations
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was 0.10 for (3) and 0.13 for (4). Again, EXZTRMX contributed the most to the 
reduction of variance.

The results of reliability and verification tests appear in Figs. 15 and 16. 
Categorical forecasts scores (Fig. 16) were not radically different from those 
for the 30-minute forecasts, since a larger verification region was specified 
for these 60-minute forecasts (400 km2 rather than 144 km2) . The peak CSI is 
still achieved at a threshold of 35%, where the POD is 0.71, but the FAR and 
bias are larger (0.50 and 1.4, respectively).

9. DISCUSSION

This study confirms the results of SE81, who reported significant skill at 
forecasting future ZTR as a statistically-derived function of current ZTR and 
the volumetric reflectivity indices VIL and TOPS. Though deterioration of 
skill is evident for 60-minute forecasts, the forecasts at least as far as 
30 minutes are clearly useful. It should be possible to improve the forecasts 
for projections beyond 30 minutes by the incorporation of new predictors 
involving environmental conditions and time rates of change of reflectivity 
characteristics. It might also be useful to state the probability that 
reflectivity will exceed some threshold during a future period of time, such 
30 to 60 minutes.

We now intend to extend this extrapolative-statistical approach to quantita
tive precipitation forecasting. It is possible that the 30- and 60-minute 
rainfall accumulation fields are less volatile and more spatially continuous 
than the instantaneous ZTR field. Rainfall amount will be treated as a 
function of extrapolated ZTR, VIL, and TOPS over the duration of the forecast 
period. The next phase of this research effort is now underway.
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Figure 1. Schematic diagram of extrapolative forecast 
process for radar fields. Cross-hatched region at 
right ("t0 extrap") represents area over which 
precipitation is forecasted at t+30.
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Figure 2. Possible outcomes of categorical (yes/no) 
forecasts for radar reflectivity.
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Figure 3. Number of grid blocks within each
forecast/verification category, for 30-minute radar 
reflectivity forecasts. Numbers in parantheses are 
for persistence forecasts (non-extrapolated fields); 
numbers represent thousands of cases.
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Figure 4. Scores for 30-minute extrapolation and 
persistence forecasts of reflectivity of 18 dBZ or 
greater.
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Figure 5. As in Fig. 4, except for 60-minute 
forecasts.
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Figure 6. As in Fig. 4, except for forecasts of 
40 dBZ reflectivity.
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Figure 7. Expected values of ZTR as a function of 
30-minute extrapolated values of (a) ZTR and (b) 
TOPS. All values are averaged over 12 x 12 km 
regions. Number of cases within each predictor 
category are indicated.
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PERCENTAGE REDUCTION OF VARIANCE IN ZTR

Figure 8. Reduction in variance with respect to
12 x 12 km average ZTR, by various initial-time and 
extrapolated volumetric radar predictors. Forecasts 
are for 30 minutes.

PERCENTAGE REDUCTION OF VARIANCE IN ZTR

Figure 9. As in Fig. 8, except for 60-minute 
forecasts.
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Figure 10. Percentage of 12 x 12 km regions in which 
40-dBZ echoes occur, as a function of 30-minute 
extrapolated forecasts of (a) ZTR and (b) VIL. The 
predictor values are local maxima within the 
12 x 12 km region.
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PERCENT REDUCTION OF VARIANCE, ZTR > 40DBZ

Figure 11. Reduction of variance with respect to 
binary reflectivity predictand (ZTR>40 dBZ), by 
various initial-time and extrapolated predictors 
Predictors and predictand are all based on local 
maxima within a 12 x 12 km region.
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Figure 12. As in Fig. 10b, except for 60-minute 
forecasts.
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PERCENT

PROBABILITY OF 40 DBZ ECHO (%)

Figure 13. Reliability of 30-minute probabilistic 
reflectivity forecasts. Verification results are 
from OKC 1987 and 1989 data. Probabilities are 
valid for 12 x 12 km regions.

SCORE

Figure 14. Scores for 30-minute categorical 
reflectivity forecasts produced by applying 
thresholds to probabilistic forecasts.
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PERCENT

Figure 15. As in Fig. 13, except for 60-minute 
forecasts valid within 20 x 20 km regions.
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Figure 16. As in Fig. 14, except for 60-minute 
forecasts valid within 20 x 20 km regions.
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